B.Tech III Year II Semester

JNTUA COLLEGE OF ENGINEERING (AUTONOMOUS) PULIVENDULA

19AME64c – DESIGN OF TRANSMISSION SYSTEMS

(Professional Elective-II)

L \mathbf{T} C 3 3

Course Objectives: The objectives of the course are to make the students learn about

- Explain the various elements involved in a transmission system.
- Focus on the various forces acting on the elements of a transmission system.
- Design the system based on the input and the output parameters.
- Produce working drawings of the system involving pulleys, gears, clutches and brakes.
- Demonstrate the energy considerations in the design of motion control elements.

UNIT – 1: Flexible power transmission systems

10 Hrs

Flexible power transmission systems: Design of Belts – Flat Belts and Pulleys – V Belts and Pulleys – Design of chain drives – Wire ropes.

Design of bearing: Design of sliding contact bearing using Sommerfield number – Design using Mckee's equation – Selection of rolling contact bearings.

Learning Outcomes:

At the end of this unit, the student will be able to

• Demonstrate the importance of bearings in the transmission system. 1.2 • Design sliding contact bearing using Somerfield number L4 • Solve problem on design of sliding contact bearing using Mckees's equation. L3 • Identify the factors required for the selection rolling contact bearings L2 • Choose various types of flexible power transmission systems. L3

UNIT - II: Spur and Helical gears

10 Hrs

Spur and Helical gears: Gear geometry - Kinematics - Forces on gear tooth - Stresses in Gear tooth – Selection of gear material based on bending stress and contact stress – Design of Spur gear – Power transmitting capacity, Parallel Helical Gears - Kinematics - Tooth proportions - Force analysis – Stresses in Helical gear – Design of helical gear – Crossed Helical gears.

Learning Outcomes:

At the end of this unit, the student will be able to

- Explain Kinematics of different types of gears. L2 • Predict various forces and stresses acting on the gear tooth. L3 • Select materials for a gear based on bending and contact stresses L3 • Analyze the power transmitting capacity of a gear. **L4** • Design a spur gear
- UNIT III: Bevel and Worm gears

8Hrs

L5

Bevel and Worm gears: Straight Bevel gears – Kinematics – Force analysis – Stresses in straight bevel gear tooth - Design of bevel gear - Worm gearing - Kinematics - Forces - Friction and Efficiencies – Stresses in worm gear tooth.

Learning Outcomes:

At the end of this unit, the student will be able to

• Identify the differences between the helical gear and a bevel gear. L2 • Solve problems on the design of helical gear. L3 • Explain the kinematics of helical, straight bevel gears and worm gears. L3 • Predict the various forces acting on the worm gear tooth. **L3** Select of helical, bevel and worm gears in power transmission L3

> Mechanical Engineering Department, JNTUA College of Engineering. PULIVENDULA - 516 390.

Page 1 of 2

UNIT – IV: Design of gear boxes

8 Hrs

Design of Speed reducers – Design of multi speed gear boxes for machine tools – Structural and ray diagrams.

Learning Outcomes:

At the end of this unit, the student will be able to

 Select the speed reducers in power transmission. 	L3
Design speed reducers.	L5
 Design of multi speed gear boxes for various applications. 	L5
 Draw ray diagrams of gear boxes. 	L2

UNIT - V: Elements of motion control

8 Hrs

Internal – Expanding Rim clutches and Brakes – External – Contracting Rim clutches and Brakes – Band type Clutches – Cone clutches and Brakes – Energy considerations – Temperature rise – Friction materials.

Learning Outcomes:

At the end of this unit, the student will be able to

•	Explain on elements of motion control.	L2
•	Outline the importance of clutches and brakes in power transmission.	L2
•	Model various types of clutches and brakes.	L3
0	Solve problems on the design of clutches and brakes	L3
	Calculate the temperature wise due to friction and select materials according.	L4

Text Books:

- 1. Joseph Edward Shigley and Charles, R. Mischke, Mechanical Engineering Design, McGraw –Hill International Editions, 2000.
- 2. Machine Design- an integrated approach, (5th Edition) by Robert L. Norton, Pearson publisher, 2000

Reference Books:

- 1. Design Data, PSG College of Technology, DPV Printers, Coimbatore, 2005.
- 2. Malisa, Hand Book of Gear Design, Tata Mc Graw Hill, International Edition, 2000.
- 3. V.B. Bhandari, Design of Machine elements, Tata Mc Graw Hill, 2001.

Course Outcomes:

At the end of this Course the student will be able to

	Design pulleys, chain drives, rope drives and belt drives.	L5
•	Determine performance requirements in the selection of commercially available transmission drives.	L4
•	Design Brakes and Clutches	L 4
•	Design various types of gear boxes.	L5
•	Select materials for various applications in the transmission elements.	L3